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Abstract. This paper proposes a hierarchical feature-matching model for the typical faults detection, which is
a big challenge in the trouble of a moving freight car detection system (TFDS) due to the constant color and
complex background of images. The proposed model divides fault detection into two stages: image segmenta-
tion and parallel shape matching. In the process of segmentation, a fast adaptive Markov random field (FAMRF)
algorithm is presented based on the image pyramid model and affinity propagation theory. In the process of
shape matching, a shape descriptor named exact height function (EHF) is introduced on the basis of parallel
dynamic programming. The experimental results indicate that the proposed hierarchical model combined with
FAMRF and EHF can achieve automatic detection of an air brake system, bogie block key, and fastening bolt.
The proposed model achieves high detection accuracy and great robustness, and it can be effectively applied to
the fault detection in TFDS. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: [T/ TOH 540053114
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1 Introduction

Fault inspection for railway equipment is a serious routine
maintenance task to ensure the security of freight trains.
For a long time, it has been performed by skilled workers,
which is time-consuming and inefficient. With the rapid
development of both image capturing devices and computing
methods, we continue to focus on the image processing and
machine learning algorithms that can be implemented more
reliably and efficiently than manual detection.

Liu et al.l proposed a hierarchical inspection framework
to detect the missing bogie block key (BBK) on freight trains
under the complex environment. A cascaded detector trained
by the AdaBoost is used to classify the fault region with a
gradient-coded co-occurrence matrix (GCCM) and linear
support vector machine (SVM). The proposed framework
can inspect the missing BBK with high speed and accuracy.
Cao et al.l presented the weighted margin sparse-embedded
(WMSE) classifier for brake cylinder detection. The WMSE
classifier takes advantages of VC-dimension minimization
and weighted margin learning. The experiments show that
the WMSE approach can obtain a much greater detection
performance. To inspect typical trouble of a moving freight
car detection system (TFDS) faults simultaneously, Sun
et al® proposed an automatic fault recognition system
(AFRS) based on two convolutional neural network (CNN)
models. The proposed system has outstanding performance
on fault inspection of freight trains.

However, machine learning algorithms such as GCCM
and WMSE need to build a sample database, which have
direct impact on the inspection results. Moreover, with
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many hyperparameters needing to be optimized, the design
of a good deep learning network architecture is complicated.
The deep learning methods tend to overfit when training
samples are insufficient. Complex networks lead to a sharp
increase in training and recognition time. There are some
good deep CNN models (VGGNet, GoogLeNet, ResNet,
etc.) needing to be trained for several days or even weeks.
The requirements of hardware (e.g., Titan X GPU) will
increase at the same time.

Kim et al.B presented an automated inspection system for
rolling stock brake shoes (BS). The distances between BS
and wheels are measured by analysis module. The proposed
system can measure all specifications of BS with high accu-
racy. Li et alB described an automatic fault recognition
method with two phases (localization and recognition) for
BS key missing based on shape descriptors. This method
is insensitive to noise and has good performance for complex
background images. Xull introduced an image recognition
algorithm for BBK based on shape context (SC) and Gull
combined PCA with a SC shape descriptor to achieve
high accuracy of fault inspection. In addition, some inspec-
tion algorithms are widely applied to inspect other railway
equipment, such as dust collector,u’H BS Wear,ﬂ"];CI fastenin
bolts 2O locking plate,":‘I angle cocks,d coupler yoke,
fastener,D and so on.

Due to the diversity and complexity of TFDS faults, an
inspection algorithm for one type of fault does not suit
another. Meanwhile, many inspection methods mentioned
above analyze local features of fault regions and construct
the classifiers to match target objects. Hence, these classifiers
are insensitive to the size of targets. Global features obtained
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by image segmentation should be considered to solve these
problems.

Among the existing segmentation methods, the
approaches with Markov random field (MRF) account for
a large proportion. MRF-based methods can naturally
represent the hierarchical structure, labeling accuracy, and
spatial coherence within a Bayesian framework.Z0 Dong
et al. 8 proposed a label inference approach for segmenting
natural images into perceptual regions using the MRF model.
Chen et al.~ put forward the multispectral image texture
segmentation method using the multiresolution fuzzy MRF
model for a variable scale in the wavelet domain. Therefore,
a multiresolution MRF model based on a clustering method
can be considered for TFDS detection.

Shape matching is also of great value in evaluating and
comparing various algorithms. Contour-based methods
extract contour features to describe objects such as SC,BEl
inner distance shape context, B and height functions (HR).B
Taking a sample point as the reference point, the HF is devel-
oped based on the distance between other sample points and
the tangent line of the reference point. HF is insensitive to
noise and occlusion, and also invariant to geometric transfor-
mations such as translation, rotation, and scaling.

In this paper, a multiresolution MRF model named fast
adaptive MRF (FAMREF) is proposed to construct a hierar-
chical label space. Pixel position features of images are
considered in the FAMRF. Multiscalar information in the
wavelet domain is applied to improve the accuracy and effi-
ciency. The histogram smoothing and affinity propagation
based on a modified k-means algorithm are introduced to
assign the number of layers and to achieve the adaptive
image segmentation. A termination criterion of energy func-
tion is designed to modify the MRF model to improve the
calculation speed. Subsequently, TFDS images are inspected

based on the shape descriptor named exact height function
(EHF). To achieve fast and accurate detection, the parallel
matching framework is used to identify whether there is
a fault in each label space.

The rest of this paper is organized as follows: Sec. [ intro-
duces the FAMRF hierarchical model. Section [ focuses
on the problem of parallel shape matching. The process
of railway equipment detection is summarized in Sec. [
The experimental results and analysis are showed in Sec. f.
This paper finally presents the conclusion and future work
in Sec. .

2 Fast Adaptive Markov Random Field Model

As shown in Fig. [l], it is a challenge to perform such fault
inspection because of the great change of illumination in an
outdoor environment. A hierarchical model named FAMRF
is designed to find an efficient solution for hierarchical seg-
mentation. The FAMRF includes two issues: basic model
construction and optimization. The basic model is con-
structed with wavelet-domain MRF (WMRF), histogram
smoothing, and affinity propagation (AP)H theory. Figure [}
shows the diagram of the FAMRF hierarchy model.

2.1 Wavelet-Domain Markov Random Field Model

A majority of pixels in images are affected by the neighbor-
hood pixels. In the MRF model, the prior information above
is used to build the probability distribution of an interactive
label to represent the spatial interaction of each pixel.
Assume that digital image / has Np bands on the N X N
grid S. The original image is decomposed into / — 1 layers
by wavelet transform, and the decomposed image is denoted
as W. Each wavelet scale is expressed as n (0<n </,
n € N,). Each band of the W is decomposed by Haar

1'4 v
W
I/‘(/‘\\\' 1554

3 5"‘\‘\0‘

Fig. 1 Original images captured by TFDS and its background model (a) different fault images in TFDS,

(b) gray histogram, and (c) background model.
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Fig. 2 Diagram of the FAMRF hierarchy model.

wavelet B W) (b e {12,...,Np}) is the wavelet coeffi-
cient of b band image. Therefore, the original image corre-
sponds to n =0 and the image sequence of [ kinds of
resolution is obtained. The feature vector of lowest resolution
is given as

n n (1) n.(2) n.(b) n,(Np) T
wio=[wiown L ws W (H
n(b) _ 1. LLn/(b) _ LHn(b) HLn(b)  HHn/(b)1T
where  w;" = [Wij s Wij s Wij s Wij I
LLn(b) _ LHn(b) _ HLn.(b) _ HHn.(b
and w;; n(®), Wi n(®), i n(6), i ") are the wavelet

coefficients of pixel (i, j) in LL, LH, HL, and HH subband
(as shown in Fig. fJ) of b band image on scale n, respectively.
The set of grid S in TFDS images can be defined as
S={S,8,...,8,,...,S,_1}, where S, denotes the grid
on scale n. And then, the label field of » band image is
developed based on the grid set §,, at each resolution.
According to MRF theory, label field set X is composed
of the pixel labels of the decomposed image, namely

X = {xg5,. Xg5,s ... 1 Xg, }- xl(-;) is the label of pixel (i,j) in
grid set S, on scale n. The Potts’ modelBH s selected to
calculate the local constraint relationships between different
labels. The local probability P[xl(-;l) |x§\;’)] of the label field set
can be expressed as !

€xp [_Zi’j’eNijv(xijv xi’j’)}

= exp{— > V(xif’ij,)]’

P =

“eL i'j'€Ny;
B (xij #xijr)

V(xij, xirj0) = { , 2)
0 (xij = xt’j’)

where L is the phase spaceH of the label field. N;; is the
neighborhood of pixel (i, j). V denotes multivariate potential

function of the Potts” model. f is a given constant. xg\'fi) is the

]

label of the neighborhood of pixel (i, j) on scale n.

LLQ2)|HL(2)
HIL(1)

LH(2)|HH(2)
LH(1) HH(1)

Fig. 3 Wavelet decomposition for TFDS images.
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Each feature of the decomposed image is independent of
any others under the condition of a given class. The Gauss
model® is used to develop the feature field model, and
a probability distribution of the feature field W is defined
as follows:

M
S = ST 0w ) = m), 3)

“

where m (m = 1,2,..., M) is the classified label. M is the

total number of labels. f [wg;l) |x§7)} is a Gauss density prob-

” , , (m)y () _
ability function of pixels on scale n. f[w;;’|x;;’ = m] and

/1,(,'11) are a Gauss density probability function and the propor-

tion of pixels of the class m on scale n, respectively. ,uﬁ,'f) and

Z,(,;’) are the mean vector and covariance matrix of the class
m on scale n, respectively.

2.2 Parameters Estimation

Based on the theory above, the joint distribution of the label
field X and the feature field W is shown as

H IT 7w ke 1P L ) 5)

n=0(i,j)€Ss,

Maximum a posteriori (MAP)EE explicitly takes a cer-
tain prior distribution of signal in modeling, which results in
a much more accurate estimation than that without the prior
knowledge. Meanwhile, MAP-based approaches can effec-
tively alleviate overfitting to yield satisfactory performance.
So, it is used to estimate segmentation in a wavelet domain

= arg mm{H H 1) +E w ]} 6)
n=0 (i,j)E€S, ” i
where E (n)‘ » and E ) denote the energy function of the

feature fleld and label field, respectively. The Gauss
model is used to estimate the feature field of each class in
each scale, and the energy function of the feature field of
class m is given as

[

] . )

(n)

>

[0
E n n - -
Wolag=m = =3 i {

(n) ¥
=l

The Potts’ model is used to estimate the label field, and its
=pxn; [xl(;l)], where

Jrln{

energy function is given as E
u
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1(7)] is the number of neighborhood locations whose
phases are equal to that of xg.’) in the neighborhood of
pixel (i, j). The label field energy is used to erase the isolated
points in current segmentation to obtain better consistency.

The model parameters estimation cannot be performed by
training data in unsupervised segmentation. This problem is
solved by searching for a subo £tlmal solution using the
expectation-maximization (EM) method. The optimal
segmentation results of each scale are obtained by the iter-
ative conditional mode (ICM)E method using

}’ll] [)C

Aln .
xgj) = arg Hl(l}l{EW(n)‘x(,,) + EX(,,)}. ®)
NG i Xij ij

ij

To minimize the influence of fixed potential S, the vari-
able weight a(z, n) is introduced to connect the feature field
and label field model.B
& = arg min{a(t, n)E o 0 + Eo}. ©)

\ ij iy ij
where a(t,n) = I”IC(I”) +4 and InC(n) is the initial
value of variable welghts on the scale n, which is
defined as InC(n) = eXx2n. e is an irrational constant
(e =2.71828...).

2.3 Initial Segmentation Algorithm

The EM algorithm for image segmentation must rely on
appropriate initial segmentation methods such as k-meansE!
and fuzzy c-means. Unlike these methods that must specify
the number of cluster categories in advance, affinity
propagatlonﬂ does not depend on a “good” initial cluster
or group. Instead, AP obtains accurate solutions by approxi-
mating the NP-hard problems in a much more efficient and
accurate way.lg AP can use arbitrarily complex affinity func-
tions as it does not need to search or integrate the parameter
space.B Due to the flexibility of the AP method, an improved
k-means based on affinity function is explored for effective
image segmentation.

AP usually uses the negative squared Euclidean distance
to measure the similarity s(i, j). However, TFDS images
contain so many pixels, which are generally >10,000
(100 x 100 pixels), that the computational complexity
of affinity functions is extremely high. Therefore, the
Euclidean distance is not appropriate for measuring similar-
ity s(i, j).

Traditionally, the histogram provides a visible clue for the
probability density function of the objects that are distin-
guished from the background.B So, we use the Euclidean
distance and the geodesic distance between points i and j
along the probability density function of the histogram to
measure similarity s(i, j). Because of the noise in a TFDS
image, its histogram varies greatly. A framework is estab-
lished to smooth the hlstogram through diffusion-based ker-
nel density estimation (KDE)8 Figure [] shows an example
of smooth KDE.

2.4 Termination Criterion for Iteration

The number of iteration is usually used as the termination
criterion in the ICM method. However, such prior knowledge
cannot be obtained in unsupervised condition. Reduction of
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Fig. 4 An example smooth KDE conducted on the TFDS image histogram (a) normalized image,
(b) original histogram, and (c) final histogram after smoothing by diffusion-based KDE.

pixel energy shows the convergence of the MRF-based seg-
mentation algorithm. Therefore, according to the energy
function of MRF, the standard deviation or its differential
of the energy of different labels is calculated as a reference
standard.

Standard deviation is considered as the iterative criterion,
the energy of each pixel after 7 iterative estimation is e ).

ij

The total energy E}M,) on scale n and the mean energy
ij

E,u,(,:’)(t) in the class m after ¢ iterative estimation can be,
respectively, defined as

M
E.mo = g e = g E €L _ (10)
1 ( iy

i.J)ES, m=1(ij)es, "

Y_(ij)es, €300,

(m)(1)
Eum =
N[)Acl(»;l)(l) = m]

; L)

(1)
ij
And the standard deviation Eo\"" is

where N[x;;”"’ = m] is the number of pixels in class m.

Eom e e ) (12)
Gm = - k]
N = m]

and the threshold of standard deviation Tﬁf) at t iterative
estimation can be defined as

EO_EZ:)(H 1)

™ (0 _‘1 - (13)

Eo®

Standard deviation differential is considered as the itera-
tive criterion, ICM algorithm stops iterating when the deriva-
tive of the threshold is less than a minimum value (i.e.,
€ =0.01), that is dT%(t)/dt < e. The process for building
the FAMRF model is summarized in Algorithm [I.

Taking TFDS image in Fig. as an example, a standard
deviation and its differential of different labels on different
scales (n =2) are calculated separately as the energy
threshold. With an increase in the iteration times, 75’ will
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Algorithm 1 Calculation steps for FAMRF model.

Input: Original image /, normalization size N x N, scale n, potential j5.

Calculation steps:

1. The originalimage is normalized as N x N, and then decomposed
into n scales by wavelet transform. The k-means algorithm
improved by AP theory with the image histogram is used to obtain
the initial segmentation results on the maximum scale n.

2. The MAP method with the EM algorithm is used to estimate
the parameters of the Gauss model, and the new image
segmentation is calculated by the ICM method.

3. Repeat step 2 to obtain the further segmentation results on
the maximum scale until the threshold of standard deviation
differential reaches the termination criterion. The segmentation
results are calculated as the initial segmentation of the nearest
scale n—1.

4. Repeat step 3 until the final segmentation results on the minimum
scale are obtained.

Output. Segmentation results /.

gradually decrease until the approach is stable and the ter-
mination criterion algorithm can be constructed.

In Figs. p(a}-p(c], the threshold of standard deviation
tends to be stable when ¢ = 25. If the standard deviation dif-
ferential is used for iterative criterion, the decrease will be
stable when ¢ = 10, which indicates that the classification
of pixels has been completed. Compared with the standard
deviation, standard deviation differential can effectively
reduce the computational complexity of the FAMRF model.

3 Parallel Shape Matching

After hierarchical segmentation (see details in Fig. [J), we use
the EHFE3 shape descriptor to identify whether there is a fault
in each layer. The parallel matching framework is introduced
to improve the matching speed and efficiency.

InFig. B, SX = {x;} (i = 1,2,..., NS) denotes the equi-
distant sample points set of the outer contour of the target.
The sample point x; follows the contour anticlockwise. NS is
the total number of sample points. For each sample point x;,
its tangent line /; is used as a reference axis /. The distance
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Fig.5 The threshold of energy standard deviation and its differential of different labels on different scales
(n = 2). (a) Standard deviation on scale 2, (b) standard deviation on scale 1, (c) standard deviation on
scale 0, (d) standard deviation differential on scale 2, (e) standard deviation differential on scale 1, and

(f) standard deviation differential on scale 0.

between the j’th (j =1.2,...,NS) sample point x; and
the tangent line [; is defined as the height value H, ;.
When the sample point is above the axis, its height value
is positive. When the point is below the axis, its height

Xv

Fig. 6 The EHFs for the sample point.

Optical Engineering

053114-6

value is negative. Therefore, the height value H; ; of point
X; to x; is given as

= det(X;_1,X;,X; ;1) 7 (14)
Xi1X 1]

where det denotes the determinant. The default value of NS
is 100.2

Because the reference axis is computed by three points
X;_1, X;, and X;,;. Moreover, the accurate height values
hijis h;; = H; ; — AH, where AH is the distance between
axis /; and line [. AH can also be computed by Eq. ([4). The
extract height function shape descriptor is defined as
h; = (hi,iJrla e

chii)" as)

s hi.NS’ hi.l’ s

The descriptor may be overly sensitive to local boundary
deformations. A smoothing function® is used to solve this
problem. Set a given positive integer [v (1 < [v < NS) as
smoothing level, the sequence of integers is divided into dis-
joint intervals [1,lv], [lv + 1,21v],..., and then the mean
value of the height values in each interval F/ as

jlv

Fl-L 3

t
v i
t=(j—1)lv+1

(16)

where j = 1,2,..., D with D = | NS/lv] (the integer part of
NS/Iv), t is an intermediate variable. Then, the matching
cost ct(p,q) between the point p on shape SX and the
point g on shape SY is
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D
ct(p,q) =Y A|Fi, = Fi], (17
=1

where 4, is the weight coefficient for every component of
the height feature®

1 - 1
" min{t,D—t+1}’

(18)

Dynamic programming (DP) has been widely used to
search the optimal correspondence of contour points.
Therefore, the optimal corresponding relationship ¢*
between shape SX and SY is calculated by the DP algorithm
to minimize the overall matching cos

NS

DP,,;,(SX.SY) = > ct[h;, g*(h;)]. (19)
i=1

It is essential to explore the minimum matching cost
(MMC) between the template and the object contours for
shape matching. The MMC between the normalized template
(set as Tmp) and the object contours [set as Con(s),
s=1,2,...,C, where C is total number of the contours
in detected images] is given as follows:

NS

DP,,;,[Con(s), Tmp] = > " ct[hf, g* (k)] (20)
i=1

where £ is the exact height value of s’th object contours.

In a word, the target shape (set as Tag), namely the con-
tour of detected objects, exhibits substantial similarity to
the template, and the MMC is defined as

DP,,,(Tag, Tmp) = min{DP,;,[Con(s), Tmp]}. 21
The process for parallel shape recognition is summarized

in Algorithm [.

Algorithm 2 Calculation steps for parallel shape matching.

Input. Segmented images /s, normalized template /;, smoothing level k

Calculation steps:

1. The contours of segmented images /s and normalized template /;
are extracted, respectively, and the contours are sampled
uniformly.

2. The EHF descriptors are used to represent sampled contour
features of segmented images and the normalized template, and
the feature reduction is performed based on the smoothing
function.

3. The matching cost of each contour is calculated, and the parallel
DP algorithm is used to find the optimal correspondence
relationship between each contour in a parallel domain.

4. Find the minimum matching cost between the normalized
template and object contours of target shape in segmented
images.

Output: Result of parallel shape matching

Optical Engineering
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| Acquired TFDS image |

| Image normalization |

| FAMRF image segmentation |
]

| Matching template extraction | | Test image layers separation |

| Geometric features extraction |>| Shape and contour filtering |

EHF shape descriptor |
|

| EHF shape descriptor | |
1

|Paralle1 dynamic programmingl

| Minimum matching cost |

Shape complexity?

| Fault | |

Yes

No fault

Fig. 7 Diagram of railway equipment detection based on FAMRF and
EHF.

4 Railway Equipment Detection

Monochrome cameras are used to collect gray images in
TFDS. So the color features are not helpful for fault inspec-
tion. In addition, image acquisition devices are installed
outdoors. The images are easily affected by the varying illu-
mination, weather, and other factors. As shown in Fig. [(a],
the acquired images are blurred or overexposed in different
weather. The common faults in TFDS are mostly caused by
the loss, damage, and position changes of small machine
components. So, the differences between normal and fault
images are not obvious, which increase the inspection diffi-
culty and computational complexity.

Taking the associations between pixel spaces and the
histogram information into consideration, the proposed
FAMREF algorithm can effectively solve the problems caused
by the constant color and complex background of TFDS
images. The proposed EHF shape descriptor can accurately
represent the contour feature of fault areas, which is helpful
to improve the fault recognition accuracy. The process of
railway equipment detection in detail based on FAMRF and
the EHF shape descriptor is summarized in Fig. [.

The test image is separated by the label after FAMRF.
Note that the geometrical features of template contour are
the divergence, which measure the compactness of a region,
defined as (perimeter)? /area. B The shape complexity C(X)
presented in Fig. [] is the one calculated by Eq. (2] described
as (std means standard deviation)

1 D
C(X) = sttd(Fg,Fg, L Fg). 22)
=1

5 Experiments and Analysis

The experiment is developed under the PC condition of Intel
Xeon E5-2630 V2 processor, 64G RAM, and Win7 OS.
For the inspection of railway equipment, the default param-
eters are set as follows: normalization N = 400, wavelet
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High speed camera

Auxiliary lights

Dynamic image gathering module

Processing and transmitting station

Detecting and analyzing center

Fig. 8 Overview of the TFDS.

decomposition level [ = 3, potential function f =5, sam-
pling number NS = 100, and smoothing level [v = 10.
All images are resized to 512 x 700 pixels to improve the
detection speed.

5.1 System Overview

As a real-time human—machine interaction fault detection
system, TFDS integrates many technologies such as dynamic
image acquisition, LED strobe control, big data real-time
processing, network communication, and pattern recognition.
As shown in Fig. B, the hardware of TFDS includes three
parts: dynamic image gathering module, processing and trans-
mitting station, as well as detecting and analyzing center.
The dynamic image gathering module is mainly com-
posed of a high-speed camera and the compensation light
source installed on the track and the rail side. When freight
trains pass through, the images are simultaneously captured
by the dynamic image gathering module. Then these images
are transmitted to processing and transmitting station and
processed by the detecting and analyzing center to detect
a possible fault of TFDS images. The filter on the compensa-
tion laser light source is used to eliminate the light interference.
TFDS also contains an automatic vehicle number recognition
system, which is used to receive the tag information installed
at the bottom of the train. The preliminary classification of
images can be achieved according to the tag information,
which provides certain convenience for fault inspection.

Dust collector T

™

= ’ Cut-out cock
7=

(@)

Fig. 9 Some typical samples used in air brake system inspection
(a) normal air brake image and (b) dirt collector damaged and cut-
out cock handle closed.
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5.2 Evaluation Metrics

According to the provision of the Ministry of Railways,
missing detection rate (MDR) and false detection rate
(FDR) of a fault detection algorithm for TFDS fault images
should be <5% and 10%, respectively. To evaluate the effec-
tiveness of our algorithm, there are several indices defined
as follows: total images, fault images, automatic detection,

(@) (b)

Fig. 10 Template extraction for air brake system (a) cutout cock han-
dle template extraction and (b) dust collector template extraction.

Table 1 Detection results of air brake system.

Cut-out cock Dust collector

handle closed damaged

MDR| FDR| MDR| FDR]|
Algorithm (%) (%) (%) (%)
Cascade detector 7.88 15.29 1.88 8.82
HOG + Adaboost + SVM 2.59 9.41 0.47 2.59
Faster-RCNN (ZF) 1.18 4.00 0 14.94
Faster-RCNN (VGG16) 0.94 1.41 0 3.65
Faster-RCNN (VGG19) 1.29 0.47 0 3.06
R-FCN (ResNet-50) 0.83 2.59 0 19.41
SSD (VGG16) 0.12 23.06 0 26.71
FAMRF + EHF 1.29 5.41 1.06 2.82
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Fig. 11 Air brake system detection (a) normalized image, (b) FAMRF hierarchy model, (c) separated
layer within two faults, and (d) detection result.

correct detection, FDR, and MDR. Missing detection means
the operation that a fault image is classified as a normal
image. False detection means the operation that a normal
image is detected as a fault image. And MDR and FDR
are defined as

Bogie block ke{k'

MDR = (Fault images — Correct detection)/Total images,

(23)
(b) . .
FDR = (Automatic detection
Fig. 12 Some typical samples used in BBK inspection (a) normal . .
image and (b) BBK is missing. — Correct detection)/Total images. (24)
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5.3 Results and Analysis
5.3.1 Air brake system

The air brake system is an important component in a freight
train. It contains the cutout cock and dust collector. The
cutout cock cuts off the air from the main air reservoir to
the brake pipe, and it is also used to shut down the brake
pipe. The dust collector is used to filter the impurities of
compressed air. Normally, the handle of the cutout cock is
invisible as shown in Fig. P(a]. When the train stops or
the brake breaks down, the handle of the cutout cock is vis-
ible. As for the dust collector, the end cover of it is usually

lost. These two defects often appear at the same time when
the air brake system is malfunctioning, as shown in Fig. P(b],
which increases the difficulty of fault inspection.

For the faults that appear in the air brake system, the auto-
matic detection process based on the proposed hierarchy
model is described in Sec. []. In particular, the fault area
is manually selected as a matching template, as shown in
Fig. [J. Meanwhile, the outer contour of each layer is
extracted separately and screened by the geometric feature
of the matching template. As shown in Fig. [0(b), the dam-
aged dust collector contains two complete contours C1 and
C2 after segmentation. C1 is the outside silhouette, and

Fig. 13 BBK detection (a) normalized image, (b) FAMRF hierarchy model, (c) separated layer within
BBK, and (d) detection result.
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C2 is the inner silhouette. Both of them have a certain sim-
ilarity in shape structure. And C2 is a better target when C1
cannot be clearly obtained by FAMRF.

To further illustrate the superiority of the proposed algo-
rithm, we performed experiments with some widely used
object detection methods such as a cascade detectord
based on LBP (Local binary patterns), and histogram of
oriented gradient (HOG) (to descript features) + Adaboost
(to select features) with a linear SVM classifier,E single
shot multibox detector (SSD)E based on the VGG16 model,
region-based fully convolutional networks (R-FCN)E
based on a ResNet-50 model, and Faster RCNNE based
on different models (ZF, VGG16, and VGG19), respectively.
The same TFDS images database are trained for fault recog-
nition. The parameters of the above methods are all set as
defaults. And all experiments of deep learning algorithms
are conducted in Caffe® with a K40 GPU and the Ubuntu
16.04 OS. A total of 850 images including 179 images of
the cutout cock handle closed and 52 images of the dust col-
lector damaged are used for testing. The detection results are
shown in Table [. Some of the results are shown in Fig. [[T].

It can be seen from Table [] that our method has 1.29%
MDR, and 5.41% FDR for the cutout cock handle database.
And for the dust collector database, our method has 1.06%
MDR, and 2.82% FDR. The proposed method is able to
accurately inspect the faults of the air brake system in
TFDS. In addition, the performance of the deep learning
methods is comparable with our method. But the SSD
and R-FCN methods are sensitive to the noise, and their
FDR is too high. The Faster-RCNN method has a good per-
formance. But this method needs to be trained for several
days with a large number of training samples and needs
high hardware requirements (see details in Sec. F.3.4).

However, the FDR on the cutout cock handle is generally
high. By analyzing Fig. ], there are many pillar-shaped poles
that are close to the cutout cock. After image segmentation
by the FAMREF algorithm, the structures of the cutout cock
handle are extremely similar to the poles, which make it
difficult to distinguish through shape features. In addition,
the method of HOG + Adaboost + SVM performs better
than our algorithm. Because the outer contour of the dust
collector changes little when the dust collector is damaged.
The shape feature of the outer contour has not enough dis-
tinctive power in shape matching.

5.3.2 Bogie block key

The BBK is a very small part in a TFDS image, as shown in
Fig. [3. Due to the clear contour of the TFDS image, we can
easily obtain its shape features. The combination of the shape
features and the geometry measurement can be used to
classify different objects. Meanwhile, the shape features are
insensitive to variable illumination, noise, and other interfer-
ing factors.

Because the triangle contour of the BBK is a relatively
unique structure in complex background, shape features of
the BBK can be described by the EHF shape descriptor.
Based on shape features of the triangle contour and EHF
shape descriptor, a normal target recognition mode is
adopted to process the fault region. In this mode, the
BBK region in a normal image is selected as a template.
Some of the results are shown in Fig. [3. To further illustrate
the superiority of the proposed algorithm, we also performed
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experiments using the above five methods. A total of 2897
images are used to inspect the BBK missing including 1257
fault images. The detection results are shown in Table .
The performances of our method are slightly better than
others, but our method has a high FDR. As shown in Figs. [3
and [[3, the main reason for the high FDR is that BBK is
too small compared with other components. The similar
shapes of other components have a strong influence on

Table 2 Detection results of BBK missing.

Algorithm MDR | (%) FDR | (%)
Cascade detector 2.11 1.31
HOG + Adaboost + SVM 0.90 2.14
Faster-RCNN (ZF) 1.14 0
Faster-RCNN (VGG16) 4.24 0.10
Faster-RCNN (VGG19) 6.31 0.03
R-FCN (ResNet-50) 3.59 0
SSD (VGG16) 1.93 0
FAMRF + EHF 0.76 1.52

(b)

Fig. 14 Typical samples used in fastening bolt inspection (a) normal
image and (b) fastening bolt missing.

(b)

Fig. 15 Contour extraction for fastening bolt inspection (a) template
and (b) template screened by its contour.
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shape matching for BBK. This is also the main reason for
the high MDR of RCNN-based method especially Faster
RCNN. For traditional Faster RCNN, the ROI pooling is per-
formed on the final feature map layer (i.e., Conv5_3 in
VGGI16) to generate features of the region. However, the
shallow convolution layer can extract some local features,
such as texture and shape, whereas the deeper convolution
layer learns more abstract features. With an increase in
the convolution layers (e.g., ZF, VGG16, and VGG19 in
Faster-RCNN), the feature of small objects is more difficult
to be extracted, which leads to an increase in the MDR of
the Faster RCNN method.

5.3.3 Fastening bolt

The fastening bolt on a brake beam is an essential component
of a train brake device. When a train is braking, the brake
beam will create a great horizontal force, which may
break the fastening bolt or make it fall off, as shown in
Fig. [[4. The status of the fastening bolt after falling off is
difficult to describe based on an exact feature model,
which becomes the primary difficulty of fault inspection.H

For the fault inspection of the fastening bolt, the auto-
matic detection process based on the proposed hierarchy
model is described in Sec. f]. The normal fastening bolt

(@) (b)

(©) (d)

Fig. 16 Fastening bolt detection (a) normalized image, (b) FAMRF hierarchy model, (c) separated layer

within fastening bolt, and (d) detection result.
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Table 3 Detection results of fastening bolt missing.

Algorithm MDR | (%) FDR | (%)
Cascade detector 3.21 4.73
HOG + Adaboost + SVM 1.42 2.89
Faster-RCNN (ZF) 1.14 0
Faster-RCNN (VGG16) 0.05 0.05
Faster-RCNN (VGG19) 0.05 0.05
R-FCN (ResNet-50) 0.11 0.05
SSD (VGG16) 2.31 0.05
FAMRF + EHF 0.89 6.41

area is manually selected as the matching template as shown
in Fig. [3. Some of the detection results of the fastening bolt
are shown in Fig. [[§. The detection results are detailed in
Table . A total of 1902 images are used to inspect the miss-
ing fastening bolt including 367 fault images.

It can be seen from Table [ that our method has 0.89%
MDR, and 6.41% FDR. The proposed method can inspect
the faults of the fastening bolt in TFDS. In addition, the per-
formances of Faster-RCNN and R-FCN are comparable with
our method. The SSD method is sensitive to the noise, and its
MBDR is too high. Unfortunately, the FDR of our method is
generally high. By analyzing Figs. [[4 and [[3, there are no
obvious changes between a normal and fault image. After
segmentation, the structures of fault regions are extremely
similar to normal images, which make it hard to distinguish
by EHF.

5.3.4 Comparison of computational complexity

Table [ lists a comparison of the training time and detection
speed. To perform a freight train image with a size of
700 x 512 pixels, its detection speed is about 0.267 s includ-
ing all steps with 12 workers in MATLAB R2016b. In
Table [, the training and computation speed of the cascade
of LBP features and the HOG + Adaboost + SVM method
are the fastest, but their accuracy is the lowest. In addition,

Table 4 Detection results of training and detection speed.

Algorithm Training time/s detection speed/s
Cascade detector 76 0.036
HOG + Adaboost + SVM 84 0.049
Faster-RCNN (ZF) 11,940 0.079
Faster-RCNN (VGG16) 29,160 0.239
Faster-RCNN (VGG19) 35,210 0.286
R-FCN (ResNet-50) >36,000 0.179
SSD (VGG16) >190,800 0.155
FAMRF + EHF N/A 0.267

Optical Engineering

053114-13

the detection speed of the deep learning methods is satisfac-
tory. But they always need too much time to train deep CNN,
especially the SSD method without a pretraining model.

In summary, the proposed model based on FAMRF and
the EHF shape descriptor can identify the typical faults
above. Unlike machine learning methods, the manual anno-
tation of images is not required. The algorithm can reduce the
influence of single color, gray in-homogeneity, and complex
background. Even if the relative position of the fault region is
interfered by an artificial mark, the proposed algorithm can
accurately inspect the faults in TFDS.

6 Conclusion

To ensure the rail traffic safety, a hierarchical feature-match-
ing model is presented to automatically inspect the typical
faults in TFDS. The proposed model consists of FAMRF
image segmentation and EHF shape matching algorithms.
TFDS images are first normalized and segmented by
FAMRF with the Pyramid model and AP theory. Then,
the images are separated by labels and filtered by the geo-
metrical features of the template. Finally, the EHF shape
description is used to realize parallel shape matching based
on shape complexity. The detection results show that the pro-
posed model can achieve automatic detection of the typical
faults: air brake system malfunctions, BBK missing, and
fastening bolt missing. The hierarchical feature-matching
model is robust against changes of illumination in an outdoor
environment and can achieve high detection accuracy.
Further work will focus on the following three aspects to
improve the speed, accuracy, and applicability of the pro-
posed model.

1. The inspection speed should be further increased by
reducing computational complexity of the hierarchical
feature-matching model.

2. The detection accuracy could be improved by intro-
ducing machine learning algorithms into the model.

3. The model should be applied to other faults to improve
the applicability.
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